
http://pubads.g.doubleclick.net/gampad/clk?id=5100309006&iu=/2215


TRANSLATIONAL AND CLINICAL RESEARCH

Concise Review: Combining Human Leukocyte Antigen G and

Mesenchymal Stem Cells for Immunosuppressant Biotherapy

ABDERRAHIM NAJI,ay NATHALIE ROUAS–FREISS,a,b ANTOINE DURRBACH,c,d EDGARDO D. CAROSELLA,a,b

LUC SENSÉBÉ,e FRÉDÉRIC DESCHASEAUX
e*

aCEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-

Immunologie (SRHI), Hopital Saint-Louis, Paris, France; bUniv Paris Diderot, Sorbonne Paris Cit�e, IUH, Hopital

Saint-Louis, UMR_E5, Paris, France; cINSERM U1014, Villejuif, France; dD�epartement de N�ephrologie, Universit�e
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ABSTRACT

Both human leukocyte antigen G (HLA-G) and multipo-
tential mesenchymal stem/stromal cells (MSCs) exhibit
immunomodulatory functions. In allogeneic tranplantation,
the risks of acute and chronic rejection are still high
despite improvement in immunosuppressive treatments,
and the induction of a state of tolerance to alloantigens is
not achieved. Immunomodulatory properties of MSCs and
HLA-G in human allogeneic tranplantation to induce tol-
erance appears attractive and promising. Interestingly, we
and others have demonstrated that MSCs can express
HLA-G. In this review, we focus on the expression of

HLA-G by MSCs and discuss how to ensure and improve
the immunomodulatory properties of MSCs by selectively
targeting MSCs expressing HLA-G (MSCs

HLA-G1
). We

also discuss the possible uses of MSCsHLA-G1 for thera-
peutic purposes, notably, to overcome acute and chronic
immune rejection in solid-organ allogeneic transplantation
in humans. Since MSCs are phenotypically and function-
ally heterogeneous, it is of primary interest to have
specific markers ensuring that they have strong immuno-
suppressive potential and HLA-G may be a valuable can-
didate. STEM CELLS 2013;31:2296–2303

Disclosure of potential conflicts of interest is found at the end of this article.

INTRODUCTION

Mesenchymal stem cells (MSCs), also referred to as multipo-
tent mesenchymal stromal cells, are able to form colony
forming unit fibroblasts and to proliferate extensively in vitro
[1]. MSCs can be isolated from different tissues including
bone marrow (BM), umbilical cord blood, adipose tissue,
liver, and muscle. Native MSCs (in situ MSCs) are still
poorly characterized despite increasing papers describing their
localization and characteristics [2–4]. In contrast, cultured
MSCs are largely described in numerous papers. These cul-
tured MSCs are generally considered to have at least a mini-
mal phenotype: CD1051CD731CD901 and CD452CD142
[5]. As well, they can differentiate into osteoblasts, chondro-
blasts, or adipocytes in vitro and in vivo [6].

In addition to their multipotential abilities, cultured MSCs
can home to sites through cytokine/chemokine gradients [7, 8].
However, in in vivo context the inflammation is required to
attract MSCs. After systemic injection, data show that MSCs

are preferentially distributed to their tissue of origin although
thereafter, few are found [9, 10]. MSCs also support the regen-
eration of damaged tissue by secreting various growth factors,
cytokines, and antioxidants [11, 12]. Among the trophic factors
secreted, several are anti-inflammatory or immunosuppressive.
Hence, one of the most interesting properties of MSCs is their
aptitude to modulate the immune response. In this review, we
focus on cultured bone-marrow-derived MSCs (BM-MSCs)
because they are the best-characterized population [13], they
have been used in several reported clinical trials, and, in gen-
eral, their immunosuppression potential does not differ greatly
from that of MSCs from other origins [14]. In addition, to
date, the immune properties of native MSCs are unknown.

Regenerative medicine and tissue transplantation represent
the only therapeutic options for many patients with terminal
organ failure. Allogeneic tissue transplantation is used world-
wide, although acute and chronic immune rejection are still
common despite immunosuppressive treatments [15]. During
the last three decades, the development of multiple immuno-
suppressive treatments has greatly reduced immune rejection
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[15]. However, the problem has not been completely solved
and existing immunosuppressive drugs have multiple side
effects [16, 17]. Therefore, MSCs are of particular interest
and are being extensively investigated in regenerative medi-
cine, even in an allogeneic context, because of their immuno-
modulatory properties.

Cultured allogeneic MSCs are widely used in clinical tri-
als in hematopoietic stem cell (HSCs) infusion [18–20], in
solid-organ transplantation in an allogeneic context [21] and
for treating autoimmune diseases such as Crohn’s disease [22]
and type I diabetes mellitus (Tables 1, 2) [23]. However,
some in vivo data on the immunomodulation capacity of
human MSCs are controversial, and results are difficult to
analyze because isolating MSCs from adult tissue often
results in selecting a heterogeneous population and the culture
conditions can vary [24–26]. Therefore, a specific marker
must be targeted according to the therapeutic use or for
potency assays. For example, for using MSCs as immunosup-
pressant cell biotherapy in allogeneic tissue transplantation or
in regenerative medicine, a biomarker assessing for immuno-
suppressive function is of great interest.

HLA–G: A KEY IMMUNOMODULATORY

MOLECULE EXPRESSED BY MSCS

How MSCs can induce immunosuppression is a complex
matter involving MSCs reacting to their environment, which
ultimately shapes the response through multiple immunosup-
pressive pathways [27]. MSCs inhibit T-cell proliferation in
vitro independently or dependently through cell contact, and a
similar mechanism of action occurs with natural killer (NK)
cells and dendritic cells (DCs) [27]. Indeed, MSCs can
express membrane-bound ligands to immunoinhibitory recep-
tors, such as programmed death ligand 1 or 2 as well as solu-
ble immunosuppressive molecules such as prostaglandin E2
(PGE2) [28]. However, more attention has been focused on
soluble immunosuppressive molecules secreted by MSCs
(Table 3). Indeed, a number of immunosuppressive molecules
expressed and secreted by MSCs, such as transforming
growth factor b, PGE2, interleukin 10 (IL-10), indoleamine-

Table 1. Selected active clinical trials involving BM-MSCs

Transplantation/

autoimmunity Conditions Intervention Phase Sponsor Status Identifier

Cell transplantation HSCs BM-MSCs infusion Expanded
access

Osiris Therapeutics Completed NCT00826046

Cell transplantation HSCs BM-MSCs infusion 1 and 2 UMC Utrecht Recruiting NCT00827398
Cell transplantation HSCs BM-MSCs infusion 2 University Hospital of Liege Recruiting NCT00603330
Solid-organ

transplantation
Kidney BM-MSCs infusion 1 and 2 Leiden University Medical

Center
Recruiting NCT00734396

Solid-organ
transplantation

Kidney and liver BM-MSCs infusion 1 and 2 University Hospital of Liege Recruiting NCT01429038

Solid-organ
transplantation

Kidney BM-MSCs infusion 1 and 2 Mario Negri Institute for
Pharmacological Research

Recruiting NCT00752479

Autoimmunity Crohn’s disease BM-MSCs infusion 1 and 2 Leiden UMC Recruiting NCT01144962
Autoimmunity Crohn’s disease BM-MSCs infusion 1 and 2 Osiris Therapeutics Recruiting NCT00482092
Autoimmunity Multiple sclerosis BM-MSCs infusion 1 Cleveland Clinic Foundation Recruiting NCT00813969
Autoimmunity Systemic lupus

erythematosus
BM-MSCs infusion 1 and 2 Nanjing Medical University Recruiting NCT00698191

Clinical trials with MSCs used as immunosuppressant cell biotherapy undertaken in the United States, European Union, and China to (a) pre-
vent graft-versus-host disease in allogeneic hematopoietic stem-cell transplantation, (b) prevent acute and chronic rejection in allogeneic
solid-organ transplantation, and (c) control autoimmune diseases.
Abbreviations: BM-MSCs, bone-marrow-derived multipotential mesenchymal stem/stromal cells; HSC, hematopoietic stem cell.

Table 2. Selected active clinical trials involving BM-MSCs: MSC
markers used in clinical trials

Identifier Markers used

NCT00826046 Positive for CD105, CD73, CD29,
CD44, CD71,
CD90, CD106, CD120a, CD124,
CD166

Negative for CD45, CD34, CD14
CFU-f
Osteo-chondro-adipocyte differentia-

tion potentials
TNFR1
Inhibition of IL-2Ra activated T

cells
NCT00827398 Positive for CD73, CD90, CD105
NCT00603330 Positive for CD73, CD90, CD105

Negative for CD45, CD34, CD14,
CD31, CD80, CD3, HLA-DR

Osteo-chondro-adipocyte differentia-
tion potentials

Inhibition of T cell proliferation
NCT00734396 Positive for CD73, CD90, CD105

Negative for HLA-DR, CD31,
CD45, CD80

NCT01429038 See NCT00603330
NCT00752479 Positive for (>70%) CD73, CD90,

CD105
Negative for (<10%) CD14, CD34,

CD45
Osteo-chondro-adipocyte differentia-

tion potentials
Allo-immune response (secretion of

IFNc)
NCT01144962 See NCT00734396
NCT00482092 See NCT00826046
NCT00813969 Not shown
NCT00698191 Positive for (90%) CD73, CD90,

CD105, CD29
Negative for (<2%) CD45, CD34,

CD14, CD79, HLA-DR

Abbreviations: CFU-fs, colony forming unit fibroblast; HLA,
human leukocyte antigen; IFN, interferon.
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2,3-dioxigenase (IDO), hepatocyte growth factor, and human
leukocyte antigen G (HLA-G) have been extensively
described as modulating T-cell proliferation and function, NK
cytotoxicity, and DC maturation. Generally, cultured MSCs
appear to be poorly able to elicit an immune response but
well able to suppress it. Presumably, all the immunosuppres-
sive functions of MSCs can be mediated by any of the previ-
ously described factors depending on the context (e.g.,
inflammation status), but certainly, key molecules play a cen-
tral role in the immunosuppressive functions and finding these
molecules is of primary interest.

By analogy, pregnancy establishes cellular and molecular
mechanisms allowing for immunotolerance toward fetal anti-
gens. This is a reliable model of true tolerance resulting from
evolutionary selection. At the feto-maternal barrier, tropho-
blasts express and secrete multiple immunosuppressive mole-
cules such as PGE2, IL-10, IDO, and HLA-G [39]. Yet,
among all these immunosuppressive factors, HLA-G has
emerged as a true key immunosuppressive molecule with the
ability to prevent the rejection of the semiallogeneic fetus by
the maternal immune system [40]. As well, a decrease in
HLA-G level is a risk factor of pre-eclampsia [41]. Therefore,
the mechanisms MSCs use to induce immunosuppression
appear to be similar to those used by trophoblasts at the
decidual placenta [42]. We, and others, have hypothesized
that HLA-G might be an important pathway node playing a
significant role in MSC immunosuppressive functions (Fig. 1)
whatever the tissue of origin (BM, adipose tissue, placenta)
[30, 43, 44].

HLA-G was first described as a key molecule inducing
materno-fetal tolerance [45], tumor escape, and allograft
transplantation acceptance [46, 47]. HLA-G molecules belong
to the nonclassic HLA-class I molecules (HLA-Ib), along
with HLA-E and HLA-F, as opposed to the classical HLA-
class I molecules (HLA-Ia), with HLA-A, HLA-B, and HLA-
C [48]. HLA-G mediates its immunosuppressive functions by
interacting with immunoreceptor tyrosine-based inhibition

motif-bearing receptors such as Ig-like transcript 2/leukocyte
immunoglobulin-like receptor, subfamily B/CD85 (ILT2/
LILRB1/CD85j) as well as ILT4/LILRB2/CD85d and killer
Ig-like inhibitory receptor (KIR)2DL4/CD158d (Fig. 2A). The
expression of ILT4 and KIR2DL4 is restricted to myeloid and
NK cells, respectively, whereas ILT2 is expressed by all
immune cells [47]. Therefore, HLA-G molecules can have
inhibitory effects in all immune cells. HLA-G binding to its
receptors occurs through phosphorylation and recruitment of
the Src homology 2 domain-containing tyrosine phosphatases
SHP-1 and SHP-2. The phosphatases subsequently dephos-
phorylate and thereby inactivate key molecules involved in
cellular activation such as AKT, mammalian target of rapa-
mycin, and signal transducer and activator of transcription
[49]. Also, HLA-G can exert its immunosuppressive functions
(a) directly by inducing CD81 T-cell apoptosis [50] or by
arresting T- and B-lymphocyte cell-cycle progression at the
G0/G1 phase or (b) indirectly by inducing regulatory T cells
or immature DCs expressing IL-10 [51]. In contrast to classi-
cal HLA-class I, HLA-G molecules show low polymorphism
and are expressed in a limited number of healthy tissues. In
adults, HLA-G is expressed within immune-privileged tissues
such as cornea and by cell precursors such as erythroid and
endothelial precursors [47]. In addition, we recently observed
the expression of HLA-G within osteoblastic cells in the
growth plate of bones and in callus postfracture: once
secreted by osteoblastic cells, HLA-G was able to suppress
osteoclastogenesis and was regulated by an osteogenic molec-
ular pathway [52].

HLA-G has seven different isoforms, including four
membrane-bound forms (HLA-G1 to -4) and three soluble
forms (HLA-G5 to -7) derived from alternative splicing of the
primary HLA-G transcript [53]. The membrane-bound HLA-
G1 and soluble HLA-G5 isoforms are typically expressed in
adults [54]. We, and others, have shown that MSCs express
HLA-G (mainly HLA-G5) and such MSCs can secrete HLA-
G during allogeneic challenge in vitro [30, 43]. Actually,
HLA-G proteins derived from MSCs suppress T- and NK-cell
proliferation and function. Moreover, HLA-G secreted by
MSCs induces the expansion of CD41CD251FoxP31 regula-
tory T cells [30]. We, and others, have described a tightly
regulated amplification loop of immunosuppression induced
by MSCs that involves HLA-G and IL-10, which act in inter-
dependently. As IL-10 upregulates HLA-G expression, HLA-
G drives T cells toward a Th2-type of differentiation with an
increase in IL-10 expression [55, 56]. For instance, we found
that both IL-10 and HLA-G5 are required for full MSC-
mediated immunosuppression [30]. This finding agrees with
IL-10 being required to induce HLA-G1 T-reg cells and DCs
[51, 57]. Despite lack of data showing the molecular pathway
linking HLA-G and IL-10, these results strongly suggest that
both molecules may act in synergy [30].

The expression of HLA-G can be directly regulated by
different mechanisms. HLA-G expression by MSCs can be
positively modulated by IL-10 (see above) and leukemia
inhibitory factor. HLA-G can also be regulated by Indian
Hedgehog (HH) during the osteoblastic differentiation, nota-
bly, through the binding of HH signaling transducer Glioma-
associated oncogene (GLI) to HLA-G promoter [52]. Other
molecules (glucocorticoid, interferon b [IFNb]) were found to
regulate HLA-G expression in immune cells [58]. However,
the mechanisms seem to be cell type-specific and need to be
evaluated in MSCs.

Of note, the immunosuppressive functions of MSCs are
not represented by a single immunosuppressive molecule but
rather a complex interdependent immunosuppressant network,
itself depending on the inflammatory status of the MSC

Table 3. MSC immunosuppressive factors

Effects on immune cells

(a) MSCs soluble factors
HGF T-cell inhibition [29]
HLA-G5 T-cell inhibition/Treg expansion-NK

inhibition
[30]

IDO T-cell inhibition-NK inhibition [31]
IGF T-cell inhibition [32]
IL1RA T-cell inhibition-MF inhibition [33]
IL6 T-cell inhibition-DCs inhibition [34]
LIF T-cell inhibition/Treg expansion [35]
PGE2 T-cell inhibition-NK inhibition [36]

(b) MSCs membrane-bound factors
Jagged 1 T-cell inhibition [37]
HLA-G1 T-cell inhibition/Treg expansion [30]
PDL1/PDL2 T-cell inhibition [28]
CD54 Treg expansion [38]
CD58 Treg expansion [38]

MSCs can exert their immunomodulatory functions through mul-
tiple factors. They are (a) soluble factors secreted in the milieu
and (b) membrane bound; in this case, a direct interaction
between MSCs and immune cells is required.
Abbreviations: HGF, hepatocyte growth factor; HLA-G5, human
leukocyte antigen G; IDO, indoleamine-2,3-dioxigenase; IGF,
Insulin-like growth factor; IL1RA, Interleukin 1 receptor antago-
nist; IL6, interleukin 6; LIF, Leukemia inhibitory factor; MSC,
mesenchymal stem cell; NK, natural killer cell; PGE2, prosta-
glandin E2.
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microenvironment [59]. Therefore, evaluating the respective
role of the different immunosuppressive molecules according
to external cues would be of interest. For instance, we found
that as compared with HLA-G, PGE2 or IDO had no effect
on inhibiting T-cell activation by MSCs in our experimental
context of allogeneic antigen stimulation [30]. In addition,
MSCs need to be activated by IFNc (priming of MSCs) to
induce the expression and function of IDO but not HLA-G.
Yet the function and expression of IDO and HLA-G5 are not
mutually influenced [60]. Of note, the priming of MSCs by
IFNc and TNFa raises some differences between BM-MSCs
and adipose-derived MSCs (AD-MSCs) because IDO expression
is particularly high in AD-MSCs; hence, IDO was described as
a key immunosuppressive molecule in human primed AD-
MSCs [61]. Therefore, evaluating an immunosuppressive mole-
cule as a biomarker of the immunomodulation capacities of
MSCs is crucial. Of interest is whether a variation in immuno-
suppressive protein expression also varies the immunomodula-
tion potential of MSCs. Some data support HLA-G as
biomarker like for fetal tolerance and pre-eclampsia. Indeed,
during in vitro expansion, MSCs show decreased content of
intracytoplamic HLA-G, which is concomitant with decreased
MSC inhibitory function [30, 62]. Moreover, Rizzo et al.
recently demonstrated that a heterogeneous population of MSCs
stimulated with IL-10 showed an increased number of MSCs

expressing both the membrane-bound HLA-G1 and soluble
HLA-G5 isoforms (Fig. 2B). In addition, the level of HLA-G
was directly associated with the rate of inhibition of prolifera-
tion of Phytohemagglutinin (PHA)-activated peripheral blood
lymphocytes [62]. Data from other works and our own clearly
show that MSCsHLA-G1 have better immunosuppressive functions
than do MSCsHLA-G1/2, as evidenced by enhanced inhibition of
allogeneic T-cell proliferation in vitro (Fig. 2C) [63]. Although
further studies are essential to appreciate the strict mechanisms
that control the MSC immunomodulatory functions via HLA-G,
HLA-G can be used as a marker to recognize MSCs with potent
immunomodulatory functions. The use of MSCsHLA-G1 instead
of non-selected MSCs for clinical applications in allogeneic
transplantation or in regenerative medicine would likely
enhance the efficiency of the treatment to prevent immune
rejection.

MSCS
HLA-G+ AS IMMUNOSUPPRESSANT CELLS

IN ALLOGENEIC TRANSPLANTATION

Graft-versus-host disease (GvHD) is a severe and frequent
complication in allogeneic HSC transplantation [64]. The coin-
fusion of MSCs and HSCs improves engraftment and reduces

Figure 1. Putative interactions between MSCs expressing HLA-G (MSCsHLA-G1) and cells from the innate and adaptive immune system
expressing HLA-G receptors. Through ILT2 expressed on all immune cells, ILT4 expressed on myeloid cells, and KIRD2L4 expressed on NK
cells, HLA-G secreted by MSCs can regulate the components of the innate and adaptive immune systems. (A): HLA-G impairs DC maturation
originating from Mo. However, HLA-G secreted by MSCs impairing DC maturation is still a putative mechanism. (B): HLA-G inhibits T-cell
alloproliferation and induces CD41CD251Foxp31 regulatory T cells [30]. (C): HLA-G secreted by MSCs inhibits B-cell proliferation and func-
tion or induces regulatory B-cell activity (manuscript in preparation). (D): HLA-G secreted by MSCs inhibits NK cytotoxicity [30]. HLA-G also
promotes regulatory NK and T-cells through trogocytosis [44]; however, whether this process occurs with MSCs expressing HLA-G remains
unknown. Abbreviations: DC, dendritic cell; HLA-G, human leukocyte antigen G; ILT2, Ig-like transcript 2; KIR, killer Ig-like inhibitory recep-
tor; NK, natural killer cell; Mo, monocyte; MSC, mesenchymal stem cell.
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GvHD, as demonstrated in a number of clinical trials world-
wide [36, 65, 66]. Thus, MSCs might provide an interesting
tool for improving allogeneic organ transplantation, in general,
and for solid organs in particular, without the use of elevated
concentration of immunosuppressive drugs. The first clinical
data describing MSC infusion in allogeneic solid-organ trans-
plant recipients are now available and seem to confirm that use
of MSCs is a promising cell therapy [21, 67]. Three phase I
and II trials are registered to assess the safety and efficiency of
MSCs in reducing immune rejection episodes or inducing tol-
erance in allogeneic kidney and liver transplantation (Tables 1,
2). However, further clinical research is needed to refine and
develop effective MSCs as treatment to prevent both acute and
chronic rejection. Fortunately, the considerable amount of clin-
ical data regarding HSC transplantation and the use of MSCs
to prevent GvHD should facilitate the use of MSCs in alloge-
neic solid-organ tranplantation. Nevertheless, the efficacy of
such treatment remains variable in some clinical trials [68],
which mitigates the enthusiasm regarding the use of MSCs as
immunosuppressant cell biotherapy. Such variations in efficacy
might be due to the heterogeneity of MSCs and the different
culture conditions [24–26]. To better adapt protocols to isolate
potent immunosuppressive MSCs aimed at reducing allograft
rejection, we suggest the selective use of MSCsHLA-G1.

HLA-G has been broadly investigated for allogeneic
solid-organ transplantation and has been well associated with
reduced number of immune rejection episodes in kidney and
liver allogeneic transplantation [69]. Indeed, data from more
than 1,000 patients show that HLA-G is associated with bet-
ter graft acceptance, and a high level of HLA-G in plasma is
associated with less acute and chronic rejection episodes
after heart and liver/kidney transplantation [70–73]. Interest-
ingly, the protein level of soluble HLA-G is greatly
increased 2 hours after injection of immunosuppressive drugs
(cyclosporine) in heart transplant patients, which suggests
that HLA-G expression is related to the immunosuppression
pathway. In addition to these clinical findings, some experi-
ments showed the direct effects of HLA-G on graft accep-
tance. For instance, when peripheral blood mononuclear cells
were treated with a solution containing HLA-G before their
infusion in patients, they did not elicit responses to allogeneic
stimuli. Peripheral blood from liver and liver/kidney trans-
planted patients who exhibit >80% graft acceptance contained
significantly higher HLA-G and IL-10 plasma levels and over-
representation of CD31CD4low or CD31CD8low suppressor T
cells when compared with kidney transplanted patients with
53% graft acceptance or with healthy patients. This finding
was confirmed by in vitro experiments showing that HLA-G

Figure 2. Heterogeneity of MSCs according to HLA-G expression and immunosuppression. (A): Mechanisms of HLA-G immunosuppression:
membrane (HLA-G1) or soluble (HLA-G5) bind ILT2 or ILT4 (ILT2,4) receptors found on lymphocytes or monocytes as well as KIR2DL4
expressed by NK cells. This induced activation by phosphorylation of immunoreceptor tyrosine-based inhibition motif in the cytoplasmic tails of
HLA-G receptors recruits the SHP-1, which results in inhibition of immune responses. (B): Different populations of MSCs with HLA-G expres-
sion: MSCsHLA-G1, MSCsHLA-Glow, and MSCsHLA-G2. To prevent the decrease of HLA-G expression in the course of in vitro expansion of
MSCs, cells can be treated with IL-10. (C): MSCsHLA-G1 exhibit better immunosuppressive functions than do a heterogeneous population of
MSCs (MSCsHLA-G1/2). Abbreviations: HLA-G, human leukocyte antigen G; ILT-2, Ig-like transcript 2; KIR, killer Ig-like inhibitory receptor;
MSC, mesenchymal stem cell; SHP-2, Src homology 2 domain-containing phosphatase 1.
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might induce functional CD31CD4low and CD31CD8low sup-
pressive T cells [69]. Finally, injection of HLA-G tetramer-
coated beads into recipient mice before allogeneic skin trans-
plantation induced suppressive T cells with prolonged graft
survival or acceptance [74]. Therefore, coupling two entities
with strong immunosuppression activities (i.e., MSCs overex-
pressing HLA-G molecules) should be of benefit in preventing
immune rejection.

MSCS
HLA-G+ AS IMMUNOSUPPRESSANT CELLS

IN REGENERATIVE MEDICINE

MSCs are also of particular interest in regenerative medicine
because of their multipotential capabilities, and testing
MSCsHLA-G1 could be of primary interest. Because BM-
MSCs can consistently differentiate into bona fide chondro-
cytes and osteoblasts, a number of research projects have
focused on designing tools to restore bone in certain diseases,
even in allogeneic contexts [75, 76]. In human, BM-MSCs
were used in clinical trials to treat several types of bone dis-
eases (bone defect repair, osteonecrosis, osteogenesis imper-
fecta). Despite the fact that the trials have to be improved,
MSCs represent promising tools for regeneration of bone in
skeletal diseases [77, 78]. Beyond their differentiation proper-
ties, MSCs have trophic abilities that improve healing and
regeneration of multiple tissues not directly derived from
MSCs [7, 8, 79]. By infusing MSCs for tissue injury, the
extent of damage and cell death can be controlled and allow
for subsequent regeneration of various tissues [79]. Several
clinical trials are using allogeneic MSCs for regeneration of
the heart after myocardial infarction and for meniscal restora-
tion following meniscal injury in part because of the trophic
capabilities of MSCs [80–83]. Moreover, the European
Regenerating Bone Defects using New biomedical Engineer-
ing approaches (REBORNE) project recently launched inter-
national clinical trials to evaluate bone repair in nonunion
bone fractures with MSCs (from BM or adipose tissue) com-
bined with biomaterials (www.reborne.org). A particular focus
is on whether MSCs are beneficial in bone repair. In addition,
since HLA-G is expressed by osteoblastic cells induced dur-
ing skeletogenesis or during bone healing after fracture,
HLA-G will be assessed as a bone-healing biomarker [52].
Therefore, MSCHLA-G1 and osteoblastic cells positive for
HLA-G might be valuable in regenerative medicine to
enhance the MSC reparative/regenerative abilities or to be
used as biomarker of tissue regeneration.

MSCS
HLA-G+ DERIVED FROM PLURIPOTENT

STEM CELLS

Most clinical trials use MSCs derived from BM, umbilical
cord blood, or adipose tissue [66]. However, the most common
source of MSCs for clinical trials is still BM (Tables 1, 2).
The doses currently used in clinical trials have been 1–2 3
106 cells per kg. Hence, we need to produce MSCs ex vivo
extensively [83]. For instance, 10,000 doses of fully character-
ized MSCs can be produced from one BM donor for therapeu-
tic injection. However, HLA-G expression tends to diminish in
long-term cultures as described above. Otherwise, lesser doses
can be produced for decreasing the time of culture but this
necessitates more donors. Nevertheless, this is less consistent

and consequently more random in terms of effectiveness due
to intrinsic donor-dependent variabilities in the immunomodu-
latory efficiency of MSCs [83]. In addition, the discrepancies
between results of the effectiveness of the treatment might be
explained by the facts that MSCs derived from different sour-
ces [83]. One solution to these problems is to have an infinite
number of MSCsHLA-G1 which should be derived from a sin-
gle source, that is, embryonic stem (ES) cells or induced-
pluripotent stem (iPS) cells. MSCs from human ES cells could
be produced under conditions relevant for therapeutic uses.
These types of MSCs do not form teratomas in vivo despite
their typical MSC phenotype and function [84, 85]. Recently, a
study provided evidence of the expression of HLA-G by ES-
and iPS-cell-derived MSCs [86]. These data show the practic-
ability of obtaining an infinite number MSCsHLA-G1 with
potent immunosuppressive functions (i.e., inhibition of NK
activation). However, pluripotent stem-cell-derived MSCs must
be compared to BM-MSCs in terms of immunomodulation
capacities. Results to date show that human ES-cell-derived
MSCs are indeed immunosuppressive, but more clarification on
the mechanisms and comparison with BM-MSCs are needed
notably in the in vivo context. Interestingly, several research
groups reported that human ES-cell-derived MSCs are more
resistant to NK-mediated lysis probably because of membrane
HLA-G [87]. Therefore, further enriching MSCs expressing
HLA-G is needed to ensure and enhance the MSC immunosup-
pressive functions.

CONCLUSIONS

To improve current protocols of MSCs used as immunosup-
pressant cell biotherapy in allogeneic transplantation and
regenerative medicine, recent research suggests the following:
(a) increase the number of MSCs expressing HLA-G with IL-
10 stimulation, and ultimately (b) isolate and use MSCs
expressing a high level of HLA-G. This latter point could be
achieved through the use of iPS-derived MSCs. These recom-
mendations would certainly enhance the immunomodulation
properties of MSCs and ensure consistency in their beneficial
effects in preventing immune rejection in allogeneic
transplantation.
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