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Abstract

Primary myelofibrosis is a myeloproliferative neoplasm that
is a precursor to myeloid leukemia. Dysmegakaryopoiesis and
extramedullary hematopoiesis characterize primary myelofibro-
sis, which is also associatedwith bonemarrow stromal alterations
marked by fibrosis, neoangiogenesis, and osteomyelosclerosis. In
particular, contributions to primary myelofibrosis from mesen-
chymal stromal cells (MSC) have been suggested by mouse
studies, but evidence in humans remains lacking. In this study,
we show that bone marrow MSCs from primary myelofibrosis
patients exhibit unique molecular and functional abnormalities
distinct from other myeloproliferative neoplasms and these
abnormalities are maintained stably ex vivo in the absence of
leukemic cells. Primary myelofibrosis-MSC overexpressed hepa-
rin-binding cytokines, including proinflammatory TGFb1 and

osteogenic BMP-2, as well as glycosaminoglycans such as heparan
sulfate and chondroitin sulfate. Transcriptome and functional
analyses revealed alterations inMSC differentiation characterized
by an increased osteogenic potential and a TGFb1 signaling
signature. Accordingly, phospho-Smad2 levels were intrinsically
increased in primary myelofibrosis-MSC along with enhanced
expression of themaster bone regulator RUNX2, while inhibition
of the endogenous TGFb1 receptor TGFbR1 impaired osteogenic
differentiation in these MSCs. Taken together, our results define
the source of a critical osteogenic function in primary myelofi-
brosis that supports its pathophysiology, suggesting that com-
bined targeting of both the hematopoietic and stromal cell
compartments in primary myelofibrosis patients may heighten
therapeutic efficacy. Cancer Res; 75(22); 4753–65. �2015 AACR.

Introduction
According to the 2008 WHO classification, primary myelo-

fibrosis belongs to Philadelphia negative myeloproliferative
neoplasms. Togetherwith polycythemia vera and essential throm-
bocytopenia, primary myelofibrosis shares features of myelopro-
liferative diseases that are a clonal amplification of hematopoietic
stem cells (HSC). Primary myelofibrosis is characterized by a
shortened life expectancy and an alteration of bone marrow
stroma as shown by myelofibrosis, neoangiogenesis, and osteo-
sclerosis (1). Despite new leukemic cell targeted therapies, pri-
mary myelofibrosis is still regarded as an incurable disease except
for rare young patients who are successful recipients of allogeneic
stem cell transplantation. Such inefficiency is likely due to an
incomplete understanding of its pathogenesis and especially of
the role of the bone marrow stroma in the pathologic process.
Actually, whereas current knowledge of hematopoietic cell altera-
tions, and especially of the role of mutations including Jak2V617F

in the myeloproliferative process, partially explains the primary
myelofibrosis pathogenesis, functional involvement of mesen-
chymal stromal cells remains poorly understood. Up to now, it is
accepted that stromal changes are not inherent but are secondary
to the cytokine production, especially TGFb1, by clonal hemato-
poietic cells. However, recently, an increasing number of evi-
dences strongly suggest the involvement of stromal alterations
in the pathogenesis of primary myelofibrosis (2). First, medullar
insufficiency is concomitant of an extramedullary hematopoiesis
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H�epato-Biliaire, Villejuif, France. 17French Military Blood Transfusion
Center, Clamart, France and Biomedical Research Institute of Armies
(IRBA), Br�etigny sur Orge, France.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

J.-J. Lataillade and M.-C.L. Bousse-Kerdil�es contributed equally to this article.

CorrespondingAuthor:Marie-Caroline Le Bousse-Kerdil�es, INSERMUMR-S1197,
Institut Andr�e Lwoff/Universit�e Paris XI, Bâtiment Lavoisier, Hôpital Paul
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in spleen/liver, suggesting a plastic microenvironment that can be
reinitialized to support hematopoiesis (3). Second, one of the
primary myelofibrosis features is the increased circulating level of
CD34þ HSCs, witnessing a perturbation of the CXCL12–CXCR4
axis and involving a deregulation of metalloprotease activity and
integrin expression in the bone marrow (1). Third, we previously
demonstrated phenotypic and functional alterations of fibro-
blasts isolated from the spleen of primary myelofibrosis patients
(3). Finally, patient plasma reveals an inflammatory cytokine
pattern that likely contributes to fibrosis, neoangiogenesis, and
osteosclerosis (1). Finally, in mouse models, there are several
evidences for stromal alterations inducing MPNs independently
from hematopoietic cell abnormalities (4, 5).

Among stromal cells, mesenchymal stromal cells (MSC) are
nonhematopoietic cells that possess multipotency, hematopoi-
etic supporting, and immunomodulatory properties. They are
main components of the bone marrow mesenchymal niches that
participate in HSC regulation through interactions with endothe-
lial cells, diffusible and environmental factors, as well as extra-
cellular matrix (ECM) components (6). MSCs also function as a
repository for precursor cells participating in bone development,
maintenance, and remodeling (6). Whereas evidences for MSC
abnormalities exist in murine models and are involved in bone
stromal changes (7), proofs of acquired alterations are lacking in
patients. Recently, Avanzini and colleagues reported genetic and
functional aberrations of bone marrow MSCs in MPN patients
and showed that MSCs exhibit decreased proliferative abilities as
well as decreased osteogenic capacities (8). These findings are
interesting but questioning as primary myelofibrosis is charac-
terized by an osteosclerosis resulting from increased bone forma-
tion and asmost of the patients analyzed in this report were under
cytoreductive therapy. In the currentmanuscript, we reported that
bonemarrowMSCs fromprimarymyelofibrosis patients, either at
diagnosis or untreated, exhibit a persistent increase of their
osteogenic abilities. This alteration is restricted to primary mye-
lofibrosis as it is not observed in essential thrombocytopenia or
polycythemia vera patients. More importantly, we showed that
this alteration was maintained ex vivo, independently from any in
vivo hematopoietic cell stimulation. Primary myelofibrosis-MSCs
also display an altered secretome with an overproduction of

TGFb1, BMP-2, and glycosaminoglycans (GAG) and a specific
transcriptome signature in relation with a TGFb1 impregnation.
Functionally, inhibition of TGFb R1 activation evidences the
involvement of TGFb in the osteogenic impairment of medullar
MSCs fromprimarymyelofibrosis patients. Altogether, our results
identify for the first time an original and specific molecular
signature of primary myelofibrosis-MSCs, suggesting their partic-
ipation in the osteogenic deregulation observed in patients inde-
pendently from any local stimulation by hematopoietic cells.

Patients and Methods
Patients and healthy volunteers

Twelve primary myelofibrosis patients at initial diagnosis
and untreated at the time of the study, six age-matched at
initial diagnosis essential thrombocytopenia/polycythemia
vera patients and six age-matched healthy donors (HD) from
our Orthopedic Unit (hip prothesis surgery) were investigated
(Table 1). Diagnosis was established by clinical features and
bone marrow examination according to the WHO group (9).
All samples were obtained with the informed consent of sub-
jects according to Helsinki declaration.

Isolation and culture of bone marrow MSCs
MSCs isolated from patients were obtained from a fragment

of bonemarrow biopsy crushed in culture medium (MEMþ10%
FBS) and transferred in culture dish. After 3 days in 5% CO2,
nonadherent cells and bone fragments were removed. MSCs
collected from HDs were isolated by adhesion to plastic. After
24 hours, nonadherent cells were removed. When 90% conflu-
ence was reached, cells were detached with Trypsin-EDTA
(passage 1: P1). The culture medium was replaced twice a week.
For proliferation assay, trypsinized cells were counted between
passages 1 and 6; cell viability was assessed after Trypan Blue
staining.

Phenotypic analysis
MSCs were washed with PBS containing BSA (Sigma-Aldrich),

and labeled with CD90-PE (clone-5E10), CD73-PE (clone-AD2;
BD-Biosciences), CD105-PE (clone-166707), CD45-FITC (clone-

Table 1. Characteristics of the patients enrolled in the study

Subject Sex Age (y) Fibrosis grade Platelets count G/L Hb (g/L) WBC G/L CD34 circ. 106/L Spleen size (cm) JAK2 V617F MPL W515L CALR

MF1 M 61 MF3 409 9.3 12 107 >20 POS NEG NR
MF2 M 57 MF1 275 13.5 7 7 >20 POS NEG NR
MF3 M 68 MF2 875 12.7 16.5 8 NA NEG NA NEG
MF4 M 49 MF3 266 15.2 6.9 8 18 POS NEG NR
MF5 M 47 MF2 97 10.6 10.1 296 NA NEG NEG NEG
MF6 M 72 MF1 516 12.4 14 26 13 POS NEG NR
MF7 M 83 NA NA NA NA 56 NA NEG NEG NEG
MF8 M 51 MF2 625 12.8 9,8 1 13 POS NEG NR
MF9 M 51 MF1 530 12.1 8.9 345 16 NEG NA NEG
MF10 F 58 MF1 476 11 9.4 39 18 POS NA NR
MF11 F 55 MF1 142 11.7 3.5 29 18 NEG NA POS
MF12 M 73 MF2 106 9.7 16.3 NA 19 POS NA NR
PV1 M 84 211 21.1 9.3 POS NR NR
PV2 F 72 412 18.3 6.7 POS NR NR
PV3 M 63 284 19.3 8.7 POS NR NR
TE1 F 86 829 12.4 6.8 POS NR NR
TE2 M 35 1000 14.6 10.9 POS NR NR
TE3 M 67 968 13.5 12.5 POS NR NR

Abbreviations: CD34 circ., CD34-positive cells in peripheral blood; Hb, hemoglobinemia; MF, primary myelofibrosis; NA, not available; NR, nonrelevant; WBC, white
blood cells; Y, years.
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UCHL1), and HLA-DR-FITC (clone-L203; R&D systems) antibo-
dies. Isotypes from same species were used as negative controls.
Membrane fluorescence was quantified using Cellquest software
on a FACScan system (Becton Dickinson; 105 live cells were
analyzed).

JAK2/MPL/CALR mutation analysis
DNA from MSCs was purified using standard protocols.

Detection of JAK2V617F or MPLW515L/K mutations was per-
formed using an allele-specific RQ-PCR assay (Ipsogen Jak2
MutaQuant and MPLW515L/K MutaScreen, Qiagen). The CALR
exon 9 mutations were screened by product sizing analysis and
Sanger sequencing according to the methods described by
Klampfl and colleagues (10).

Senescence assay
MSCs (5 � 104) from primary myelofibrosis patients were

cultured in six-well dishes (48 hours). The b-galactosidase stain-
ing kit was used according to the manufacturer's specifications
(Cell Signaling Technology). Senescent stained cells were scored
by visualization using light microscopy (X40-100).

Hematopoietic assay
MSCs from primary myelofibrosis patients were irradiated (60

Gy) and cultured in long-term bone marrow culture (LTBMC)
medium(MyeloCultH5100; Stem-Cell Technologies). Peripheral
blood CD34þ cells from an immobilized single HD, purified
as described (11), were layered onto the irradiated MSCs in
LTBMC medium. Each week up to 5 weeks, cells were harvested
and plated in methylcellulose medium consisting of 50 ng/mL
SCF, 10 ng/mL IL3, 20 ng/mL GM-CSF, and 4 UI/mL erythropoi-
etin (Sigma-Aldrich). After 2weeks, hematopoietic colonies great-
er than 50 cells were scored.

Cytokine array
Cells were cultured for 48 hours in MEM-a supplemented

by 10% FBS, supernatants were removed and stored at �80�C
prior the analysis, cells were counted. Quantitative measurement
(pg/mL/105 cells) of IL1b, IL1RA, IL6, IL8, IL10, IL12, IL13, IL15,
EGF, bFGF, RANTES, PF4, VEGF, active TGFb1, active TGFb2, and
TGFb3, PDGF and Osteopontin was performed by Quantibody
array (Raybiotech).

Bone marrow biopsy staining
Bone marrow trephine biopsies were obtained from our

Pathology Unit. Specimens from primary myelofibrosis
patients staged according to the WHO guidelines (9) were
obtained prior any therapy. Retrieved tissues were fixed in
formaldehyde, decalcified, and embedded in paraffin. Sections
(5 mm) were analyzed in triplicate. GAG immunostaining was
performed as described (12): AO4B08 antibody recognizes
heparan sulfate (HS), and IO3H10 antibody reveals chondroi-
tin sulfate (CS). Bound antibodies were detected with mouse
antivesicular stomatitis virus (VSV) monoclonal antibody
(P5D4) followed by a secondary antibody coupled to Alexa488
GAM (Life Technologies). Negative controls were stained with
anti-VSV and Alexa488 GAM. Images were analyzed by ImageJ
as described (13).

Glycosaminoglycan extraction and quantification
MSCs from primary myelofibrosis patients were cultivated in

culture medium until confluence. A dry pellet (106 cells) was
analyzed. After proteinase K (Merck) and DNase (Qiagen) treat-
ment, proteinswere precipitated and supernatantswere cleared by
chloroform washing followed by dialysis of the aqueous phase
(Spectrum) against the extraction buffer and water. After freeze
drying, identities of extracted GAGs were determined by specific
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Figure 1.
Primary myelofibrosis (PMF)-MSCs exhibit similar proliferative capacity and long-term hematopoiesis support compared with healthy donors. A, doubling
time of MSCs from primary myelofibrosis patients (n ¼ 4) and healthy donors (n ¼ 8) during successive passages (P) from P1 to P6. B, immunophenotype of
primary myelofibrosis-MSCs analyzed by flow cytometry; control isotypes are presented in dashed line, markers in black, (MFI, median fluorescence intensity;
n ¼ 6). C, hematopoiesis support by MSCs from primary myelofibrosis (n ¼ 3) and healthy donors (n ¼ 3) in LTBMC; numbers of hematopoietic colonies
BFU-E, CFU-G, CFU-M, and CFU-GM per 104 CD34þ cells from unmobilized peripheral blood. Results are expressed as mean � SD. White square, healthy donors;
black triangle, primary myelofibrosis patients.
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digestion with chondroitinase ABC (Sigma-Aldrich) or by nitrous
acid treatment and quantified according to the DMMB assay,
based on sulfate groups complexation, as described (14).

Transcriptome analysis
RNAs were isolated using standard protocols and their quality

was evaluated on an Agilent2100 Bioanalyzer (Agilent Technol-
ogies). T7-based amplification, labeling, and hybridization on
Agilent Whole Human Genome Oligo Microarrays 4 � 44K was
performed by Miltenyi Biotec using Agilent's technology. Nor-
malized data are accessible on public database (GSE44426).
Microarray analysis was performed by using gene set enrichment
analysis (GSEA) from Broad Institute (15). To identify genes
differentially and significantly regulated, expression ratios and
corresponding P values were calculated and data were analyzed
using MeV_4_5 Software. Unsupervised classification was per-
formed on significant genes with metric of Pearson correlation
with complete linkage. Principal component analysis allows
discriminating patients and controls on the significant gene list
in the first factorial map.

qRT-PCR analysis
Total RNAs were converted into cDNA using the Reverse

Transcription kit (Applied Biosystems). cDNA (2 mL) was added
to the Sybr Green amplification reaction mix (SG MasterMix,
RocheDiagnostics) in a 20 mL final volume containing 10 pmol of
each primer (Supplementary Table S1). Amplification cycles (n¼
40) were performed on a Light Cycler 480 (Roche Diagnostics).
Data were normalized on b-actin, RPL38, RPL13a, 18s, and
GAPDH housekeeping genes by a relative quantification, based
on the 2DDCt method.

In vivo MSC osteogenic assay
The use and care of animals were approved by the French

Institutional Animal Care and Use Committee. Subconfluent
MSCs from 3 HDs, 3 primary myelofibrosis, 3 essential throm-
bocytopenia, and 3 polycythemia vera patients were collected for
subcutaneous implantation into the flanks of 10-week-old female
nude mice. Implants (n ¼ 3–12/group) were prepared by mixing
sterile 80 to 200 mm particles (60% hydroxyapatite/40% bTCP)
(Graftys), 100 mL of human plasma and 1� 106 MSCs fromHDs
or from patients as described (16). Ten weeks after implantation,
animalswere sacrificed and the implants collected; one implant of
each groupwas decalcified and the twootherswere not to preserve
the mineralized bone formed. Implants were retrieved for histo-
logic evaluation by HES and reticulin staining. Reticulin density
was assessed by analysis of ImageJ recorded staining after skele-
tonization and area measurement.

In vitro MSC differentiation assay
Osteoblast, chondrocyte, and adipocyte differentiation abili-

ties of expanded MSCs were determined as reported (17). Briefly,

MSCs were cultured (2–3 � 104/cm2) in osteogenic medium
(a-MEM with 10 mmol/L b-glycerophosphate, 10�7 mol/L dexa-
methasone, 0.2 mmol/L ascorbic acid), adipogenic medium
(DMEM with 10% FBS, 10�6 mol/L dexamethasone, insulin
10�2 mg/mL, indomethacin 2 � 10�1 mmol/L, 100 mg/mL 1-
methyl-3-Isobutyl-xanthine), or chondrogenic medium (a-MEM,
FBS 10%, TGFb3) for up to 3 weeks. Differentiation into osteo-
blasts, adipocytes, and chondrocytes was evaluated by Von Kossa
and Red Alizarin stains, oil-red staining, and Alcian blue staining,
respectively. Red Alizarin quantification was performed as
described (18).

TGFb1 stimulation/inhibition and BMP inhibition
TGFb1 was added in the medium at 10 ng/mL. Inhibition of

TGFb1 type I receptor ALK5 or BMP type I receptors ALK2, 3 and 6
was studied by adding 10 mmol/L of SB-431542 (19) or 1 mmol/L
of LDN-193189 (Miltenyi Biotec; ref. 20), respectively, in differ-
entiation medium that was changed twice a week up to 21 days.

Western blot analysis
Protein samples were generated as described (21). For each

sample, 5 to 10 mg proteins were loaded and separated on SDS-
PAGE. Membranes were probed with primary antibodies: anti-
Runx-2 (Abcam) and anti-phospho-Smad2 (Sigma-Aldrich).
Membranes were revealed with anti-rabbit IgG-peroxidase anti-
bodies (Sigma-Aldrich). Immunoreactivity was detected by che-
moluminescence (Roche Diagnostics). Spot signal intensity was
quantified using Imaging (Bio-Rad). Data were expressed relative
to an internal standard sample, as indicated infigure legends (21).

Statistical analysis
Results were expressed as mean � SD. Statistical differences

between patients andHDswere validated by unpaired t test with a
significant P < 0.05. Statistical differences between conditions
were validated by paired t test with significant P < 0.05. Fisher
ANOVA test with two factors (samples and time of differentia-
tion) was also used and ad hoc post-tests (Tukey) were calculated
when required.

Results
Primary myelofibrosis-MSCs exhibit similar proliferative
capacity and long-term hematopoiesis support compared with
HD-MSCs

We first compared the biologic properties of MSCs obtained
from the bonemarrow of 12 primarymyelofibrosis patients (Table
1) and of 6 HDs. One week after cultivation, adherent cells from
primary myelofibrosis patients and HDs exhibited similar mor-
phology and were able to form CFU-F colonies in similar propor-
tions (7�2 vs. 6�4/103 cells). Figure 1A shows that the doubling
time of primarymyelofibrosis-MSCs was not significantly different
from that of HDs. Observed b-galactosidase activity did not assess
senescence of MSCs in primary myelofibrosis nor HDs at latest

Figure 2.
Primary myelofibrosis (PMF)-MSCs overproduce cytokines and glycosaminoglycans. A, cytokine production by MSCs. Results expressed as radar plot of all
tested cytokines for controls (n¼4) in blue andprimarymyelofibrosis (n¼8) in red (note that scales are different), and representation of significantly overexpressed
cytokines. Results expressed in pg/mL/105 cells, mean � SD. B, staining of CS and HS of bone marrow section from HD and primary myelofibrosis patients;
pictures show representative staining (magnification, �100); quantification of fluorescence of CS and HS staining is represented in HD (n ¼ 6) and in grade 1, 2,
and 3 of fibrosis in primary myelofibrosis patients (n ¼ 3 in each grade). C, CS and HS production by MSC from HD (n ¼ 3) and grade 1 or 3 of fibrosis in
primary myelofibrosis patients (n ¼ 3 in each group). Results are expressed in mg/106 cells as mean� SD. � , P < 0.05.
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passages (data not shown). MSCs from primary myelofibrosis,
essential thrombocytopenia/polycythemia vera andHDs expressed
similar phenotype (CD73þCD90þCD105þCD45�HLADR�; Fig.
1B). To further confirm theabsenceofadherentCD45þmonocytes/
macrophages that could have been coisolated in our process, we
estimated the content of contaminating hematopoietic cells in the
preparations by analyzing JAK2/PML/CALR mutations in the cul-
ture pellets. We did not evidence mutations in the DNAs retrieved
from cultures (data not shown). Long-term bone marrow cultures
were performed to assess their hematopoietic support abilities for 1
to 5 weeks. Clonogenic assays performed each week (BFU-E, CFU-
G, CFU-M, and CFU-GM; Supplementary Table S2) showed that
MSCs from primary myelofibrosis patients (n ¼ 3) and from HDs
(n ¼ 3) exhibited a similar capacity to support normal hemato-
poiesis (Fig. 1C).

Primary myelofibrosis-MSCs overproduce fibrogenic and
inflammatory cytokines

Cytokine production by MSCs from 8 primary myelofibrosis
patients and 4 HDs was studied (P3-P5) using quantitative
ELISA. Figure 2A shows that MSCs from primary myelofibrosis
patients overproduced cytokines such as IL6, PDGF, RANTES,
BMP-2, and active TGFb1. The absence of CD45þ cells avoids a
potential hematopoietic contamination that would participate in
this overproduction. No BMP-4, BMP-7, EGF, IL10, IL12, IL13,
IL15, and IL1b were detected (<1 pg/mL/105 cells) and no
significant difference was observed in the production of BMP-
5,Osteopontin, PF4, and IL8 byMSCs isolated either fromHDsor
from primary myelofibrosis patients.

MSCs from fibrotic primarymyelofibrosis patients express high
levels of GAGs

We further analyzed the capacity of primary myelofibrosis-
MSCs to produce sulfated GAGs reported to enhance the bio-
availability of heparin binding protein (HBP), such as growth
factors and chemokines. Bonemarrow sections frompatients (n¼
9) andHDs (n¼ 6) were stainedwith antibodies against CS orHS
GAG species and relative fluorescence level quantification were
performed by specific ImageJ analysis (Fig. 2B). The level of CS or
HS increased significantly with fibrosis grade in bone marrow of
primary myelofibrosis patients: compared with HDs, primary
myelofibrosis grade 3 exhibited higher level of CS and HS. We
further investigated the HS and CS amount of GAGs produced in
vitro by MSCs (P3–P5) from HDs and primary myelofibrosis
patients with fibrosis grade 1 and 3 (n ¼ 3/group). MSCs from
patients with grade 3 fibrosis exhibited a significantly higher
production of HS and CS compared with patients with grade 1
fibrosis and to HDs, correlating immunostaining observations.

Primarymyelofibrosis-MSCs exhibit an increased in vitro and in
vivo osteogenic potential

We further compared the abilities of MSCs from primary
myelofibrosis patients (n¼ 7), essential thrombocytopenia/poly-
cythemia vera patients (n ¼ 6) and HDs (n ¼ 3; P3-P5) to
differentiate towards the osteogenic, chondrogenic, and adipo-
genic lineages. Fig. 3A shows that under specific conditions, MSCs
from patients and from HDs similarly differentiated into cells
with morphologic and cytochemical characteristics of adipocytes
and chondrocytes, as shown after Oil-Red O or Alcian Blue
staining. In contrast, under osteogenic differentiation conditions,
MSCs from primary myelofibrosis patients showed an increased

capacity to mineralize compared with essential thrombocytope-
nias/polycythemia veras andHDs (attested by Von Kossa and Red
Alizarin stainings) and in alkaline phosphatase activity (Fig. 3A).
Red Alizarin quantification showed a significant increased min-
eralization at day 21 in primary myelofibrosis-MSCs compared
with essential thrombocytopenia/polycythemia veras and HDs
(159.8� 35.9 vs. 62.35� 17.7 and 50.9� 13.1mg/L, n¼ 3, 6 and
7, respectively, P ¼ 0.05; Fig. 3A).

We further quantified the expression of genes involved in
osteogenic differentiation. Figures 3B and C show that after 21
days in osteogenic conditions, the expression of Runx2, Dlx5,
osteopontin, and integrin-binding Sialo-protein (IBSP) were sig-
nificantly upregulated in differentiated MSCs from primary
myelofibrosis compared with essential thrombocytopenia/
polycythemia veras and HDs.

To confirm the increased osteogenic capability of primary
myelofibrosis-MSCs, we investigated their in vivo osteogenic
capacity by ectopic implantation into mice. Ten weeks postim-
plantation, mineralized bone tissue was observed in all implants
and primary myelofibrosis-MSCs exhibited an increased osteo-
genic potential compared with HDs (Fig. 3D, n ¼ 3/primary
myelofibrosis and HD, n ¼ 6/essential thrombocytopenia/poly-
cythemia vera). Interestingly, the increased in vivo osteogenic
capabilitywas associatedwith an increased deposition of reticulin
fibers, a mark of fibrosis. Fibrosis density was significantly higher
after primary myelofibrosis-MSC implantation compared with
essential thrombocytopenia/polycythemia veras and HDs (2.3 �
1.6 vs. 0.9 � 0.7 and 0.3 � 0.2 AU, P < 0.01). Altogether, our
results evidence that implantation of primary myelofibrosis
MSCs, and not of essential thrombocytopenia/polycythemia vera
MSCs, lead tofibrosis and increased ossification inmurine ectopic
ossicles similarly to that is observed in primary myelofibrosis
bone marrow.

Primary myelofibrosis-MSCs show an original transcriptome
signature related to osteogenic lineage and TGFb1 signaling

To confirm alteration of primary myelofibrosis-MSC differen-
tiation, we compared gene expression of MSCs from primary
myelofibrosis patients (n ¼ 6) and HD (n ¼ 6; P2–P4). Tran-
scriptome analysis with 24,000 targets revealed 173 significantly
deregulated genes. Among them, 57 were downregulated more
than 2-fold and 22 were upregulated more than 2-fold (Fig. 4A1
and A2; GSE44426). When focused on genes involved in lineage
commitment (22), we observed that 9 of 33 genes regulating
osteogenic commitment, including master genes such as Runx2
and Dlx5, were significantly deregulated. Principal component
analysis of these genes revealed a good clustering of primary
myelofibrosis-MSCs compared with HDs arguing for a specific
mRNA signature of primarymyelofibrosis-MSCs (Fig. 4A3). Oste-
ogenic lineage based clustering prompted us to investigate an
osteoprogenitor signature in primary myelofibrosis-MSCs. We
performed a bioinformatics assay by comparing published tran-
scriptome of MSCs that were differentiated in osteoprogenitors
and osteoblasts (23) with primary myelofibrosis-MSC transcrip-
tome. This analysis revealed a gene expression pattern in primary
myelofibrosis-MSCs consistent with a more advanced stage of
differentiation toward osteoblast. Runx2, Dlx5, and Msx1 are
genes traditionally associated with osteoprogenitor state. We fail
to evidence a significant increased expression of these genes, due
to heterogeneity among patients (data not shown). However,
Runx2 protein was increased in primary myelofibrosis-MSCs
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Figure 3.
Primary myelofibrosis (PMF)-MSCs exhibit
an increased in vitro and in vivo osteogenic
potential. A, MSCs from healthy donors
(HD, n¼ 3) and from primary myelofibrosis
patients (n ¼ 6) were cultured in
adipogenic medium (Oil-Red-O staining;
magnification, �10) or chondrogenic
medium (Alcian Blue staining;
magnification, �20) for 21 days (A, left).
Osteogenic differentiation of MSCs from
primary myelofibrosis, essential
thrombocytopenia (ET)/polycythemia vera
(PV) patients or healthy donors were
performed during 21 days: alkaline
phosphatase (ALP) staining (�10), Von
Kossa, red alizarin, and alkaline
phosphatase. Pictures representative of
six experiments, MSCs at passage 6 (A,
middle). Red alizarin quantification was
performed [HD, n ¼ 3; essential
thrombocytopenia (ET)/polycythemia vera
(PV), n ¼ 6; primary myelofibrosis, n ¼ 7];
results are expressed in mg/mL as mean �
SD; � ,P<0.05, (A, left bottom). B, ontogeny
of osteoblast and regulatory control of
osteoblast lineage from MSCs to
osteoblast. Blue, positive regulators; red,
inhibitor factor; black, genes involved at
different stage of differentiation. C, gene
expression of DLX5, Runx2, osteopontin
(OPN), and IBSP tested after 21 days
in osteogenic condition. Results are
normalized on housekeeping genes
expression (b-actin, GAPDH, RPL38,
RPL13a, and 18s). n¼ 6; � , P < 0.05. D, MSCs
from HD (n ¼ 3), essential
thrombocytopenia (ET)/polycythemia vera
(PV; n ¼ 6), and primary myelofibrosis
patients (n ¼ 3) mixed with calcium
phosphate particles were subcutaneously
implanted in nude mice on scaffolds and
examined 10 weeks later; implants were
retrieved, embedded, and sections
analyzed after HES and reticulin staining
(magnification, �10). Inset, HES and
reticulin staining of primary myelofibrosis-
MSCs represent focus on osteocytes
(arrow) embedded in new bone formed in
the particle (black star) interspaces.
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compared with essential thrombocytopenia/polycythemia vera
and HDs, as assessed by Western blot analysis (Fig. 4B). We also
focused on bonemaster gene regulators and showed upregulation
of Gremlin1, Noggin, GDF5, Sclerostin, and downregulation of
Twist1 in primary myelofibrosis patients compared with essential
thrombocytopenia/polycythemia veras and HDs (Fig. 4C). Alto-
gether these data indicate a specific shift of differentiation of
primary myelofibrosis-MSCs toward osteogenic lineage.

Finally, the upregulation of Serpine1, a well-known target of
TGFb1 (24), in association with the pivotal role of TGFb1 in
primary myelofibrosis, prompted us to compare primary myelo-
fibrosis-MSC transcriptome with the signature of HD TGFb1
treated bonemarrow-MSCs (GSE46019; ref. 25). Figure 4D shows
that 13% of significantly deregulated genes in primary myelofi-
brosis-MSCs were common with genes significantly deregulated
in TGFb1–treated HD-MSCs. Altogether these data suggested a
TGFb1 signature in primary myelofibrosis-MSC transcriptome
deregulation.

TGFb1 is involved in the osteogenic deregulation of primary
myelofibrosis-MSCs

We previously showed that primary myelofibrosis-MSCs over-
produced TGFb1 and BMP-2 and that their osteogenic abilities
were increased compared with that of HD-MSCs. Therefore,
taking into account the stimulation effect of TGFb1 on osteogenic
commitment, we compared the effects of a TGFb1 treatment (10
ng/mL for 48 hours) on MSCs isolated from HDs and primary
myelofibrosis patients. We first confirmed TGFb RI and RII
expression by primary myelofibrosis and HD MSCs (data not
show). Western blot analysis showed a significant higher phos-
pho-Smad2 level in primary myelofibrosis-MSCs at steady state,
without addition of TGFb1, suggesting that these cells are con-
stantly TGFb1-stimulated (Fig. 5A, n ¼ 5). Under TGFb1 stimu-
lation, we observed an increase of phospho-Smad2 levels in HDs
and primary myelofibrosis patients. However, fold change in
pSmad2 level after stimulation by TGFb1 was not significantly
different between HD and patients (3.4 � 1.6 vs. 4.2 �1.3,
respectively, n¼ 5, P¼ 0.15). RQ-PCR analysis focused on Runx2,
Dlx5, Osterix, and Twist1 revealed a confident clustering by prin-
cipal component analysis (Fig. 5B), demonstrating a specific
regulation of these genes in primary myelofibrosis-MSCs in
response to TGFb1. We then hypothesized that endogenous
TGFb1 could be involved in primary myelofibrosis osteogenic
impairment. To test this hypothesis, we inhibited TGFb1 type I
receptor ALK5 by a SB-431542 inhibitor treatment during the in
vitro osteogenic differentiation of primarymyelofibrosis-MSCs. In

presence of SB-431542, Von Kossa and Red Alizarin stainings as
well as alkaline phosphatase activity showed an increased min-
eralization inMSCcultures inbothpatients andHDs. RedAlizarin
quantification confirmed the increased mineralization after 21
days of culture in the presence of SB-431542 (primary myelofi-
brosis: 1,485 � 493 vs. 519 � 313 mg/mL, P < 0.05, n ¼ 7; HDs:
1,840 � 191 vs. 51 � 13 mg/mL, P < 0.05); this increase was 3.5
higher inHDs (32� 15) than in primarymyelofibrosis (9� 7; P <
0.05; Fig. 5C), suggesting a different response of MSC osteogenic
differentiation to endogenous TGFb1 in patients compared with
HDs. As BMP-2 was also overexpressed by primarymyelofibrosis-
MSCs, we tested the inhibition of BMP-2 by LND-193189 during
osteogenic differentiation. In contrast and surprisingly, HDs
and PMF-MSCs exhibited a similar increased mineralization in
the presence of LND-193189, with nonsignificant difference
between their respective fold changes (26 � 7 in HDs vs.
21 � 7 in primary myelofibrosis). Similar behavior trend in
primary myelofibrosis and HDs with LND-193189 suggests that
BMP-2 is not involved in the osteogenic impairment. Taken
together, our results reveal a specific response of primary mye-
lofibrosis-MSCs to endogenous TGFb1 and suggest its involve-
ment in their osteogenic impairment.

Discussion
Althoughmany somaticmutations have been discovered in the

clonal HSCs, from the most commonly known JAK2 to the most
recent calreticulin (10), the pathogenic relevance of these muta-
tions in primary myelofibrosis pathogenesis is currently unclear.
Up to now, bone marrow microenvironment alterations were
considered as a reactive counterpart of the cytokine production by
clonal hematopoietic cells (26). Recently, more and more evi-
dences argue for a relevance of the "bad seed in bad soil" concept
in which the bad soil (altered stroma) endorsed the bad seed
(clonal HSCs) development in primary myelofibrosis (2). How-
ever, evidences for acquired alterations of stromal cells are lacking
in patients.

In the current study, we identified a molecular and functional
signature of primary myelofibrosis-MSCs that is characterized by
an increased endogenous production of TGFb1, BMP-2, and
GAGs and by an abnormal osteogenic potential that persists in
vitro, that is, in the absence of any stimulation by hematopoietic
cells and that is dependent on TGFb1 pathway activation. These
results are not observed with MSCs from essential thrombocyto-
penia and polycythemia vera patients.

As reported inother hematologicmalignancies,medullarMSCs
of primary myelofibrosis patients do not evidence differences

Figure 4.
Primary myelofibrosis (PMF)-MSCs show an original transcriptome signature related to osteogenic lineage and TGFb1. A1, transcriptome analysis from
primary myelofibrosis patients (PMF 1–6, n ¼ 6) compared with healthy controls (HD 1–6, n ¼ 6). Genes differentially expressed revealed a specific clustering of
patients versus controls. A2, volcano plot shows significantly deregulated genes (red, n ¼ 173, P < 0.01) and nonsignificantly expressed genes (black); number
of more than 2-fold downregulated genes (n ¼ 57) in primary myelofibrosis-MSCs is higher than 2-fold upregulated (n ¼ 22). A3, principal component
analysis of significantly deregulated genes involved in osteogenic commitment revealed a good clustering of MSCs isolated from patients (PMF) and from
controls, principal component 1 represents 84% of clustering whereas principal component 2 represents 15%. ns, nonsignificant. B, expression of protein
Runx2 in MSCs from primary myelofibrosis (black bar), essential thrombocytopenia (ET)/polycythemia vera (PV) patients (gray bars, n ¼ 6), and HDs (white bar)
cultivated up to 48 hours in a-MEM medium supplemented by FBS 10%. Results are expressed as a ratio to the median expression of the targeted proteins
in all samples of the same experiment; blots are representative of experiments (n ¼ 5 in each groups; � , P < 0.05). B, RQ-PCR analysis of gene expression level in
MSCs from patients (black bars, n ¼ 6), essential thrombocytopenia (ET)/polycythemia vera (PV) patients (gray bars, n ¼ 6), and HDs (white bars, n ¼ 6); results
are normalized on housekeeping genes expression (b-actin, GAPDH, RPL38, RPL13a, and 18s); � , P < 0.05. D, Venn diagrams of genes deregulated in primary
myelofibrosis-MSCs compared with HD and HD-MSCs cultured in TGFb1 medium up to 48 hours revealed that more than 10% of significantly deregulated genes in
primary myelofibrosis transcriptome are common with genes involved in TGFb challenging of MSCs.
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with HD-MSCs regarding their proliferation, phenotype, and
hematopoiesis supporting abilities (8, 27). Primary myelofibro-
sis-MSCs neither demonstrate senescence features, contrasting
with data from Avanzini and colleagues (8) in which cytoreduc-
tive therapy might have interfered with the senescence process.

Whereas primary myelofibrosis-MSCs showed similar adipo-
genic and chondrogenic differentiation capabilities than HD-
MSCs, our data clearly argue for an impairment of their osteogenic
abilities thatfitswith theosteosclerosis described inpatients (1) as
shownby their increased capacity tomineralize extracellular bone
matrix in vitro and to form new bone in vivo in immunodeficient
mice. Even if primarymyelofibrosis shares common features with
essential thrombocytopenia and polycythemia vera, our results
argue for a specific impairment of MSCs osteogenic abilities in
primary myelofibrosis patients. Such osteogenic impairment is
associated with a deregulated expression of main actors of bone
formation such as Runx2, Dlx5, and Osterix and of their reg-
ulators Twist1, Noggin, GDF5, and Gremlin. Whereas Noggin is
overexpressed in primary myelofibrosis-CD34þcells (28) and is
known to interact with GAGs (29), the reason why primary
myelofibrosis-MSCs express high levels of Noggin and Gremlin,
two BMP-2 antagonists, remains to be elucidated. Interestingly,
as observed in primary myelofibrosis-MSCs, Twist1 downregu-
lation and GDF5 overexpression are respectively associated
with osteogenic enhancement and osteoprogenitor state
(30, 31), suggesting a pro-osteogenic commitment of primary
myelofibrosis-MSCs.

Regulation of osteogenic differentiation involved several cyto-
kines including TGFb1 and BMP-2. Both cytokines are produced
in excess by primary myelofibrosis-MSCs as confirmed by the
absence of contaminating CD45þ hematopoietic cells in MSC
cultures. TGFb1, a leading cytokine in primary myelofibrosis, is
reported to be released by megakaryocytes and monocytes (32)
from patients; its overproduction and activation in primary mye-

lofibrosis-MSCs is reported for the first time in this study. Among
proteins involved in TGFb1 regulation, GAGs such as HS and CS
play an original role by modifying local concentrations of HBPs,
leading to a gradient of their concentration (33). GAGs protect
and trigger the activity of HBPs and optimize binding and activity
of growth factors such as TGFb1 and BMP-2 (33). In primary
myelofibrosis, wedemonstrated an increasedproduction ofGAGs
in vitro by MSCs and in vivo on bone marrow biopsies; this
overproduction is higher in evolved patients (fibrosis grade 3).
It is reported that enhancement of GAGs promotes osteogenic
commitment (34) and that TGFb1 exerts a dual action on oste-
oblast differentiation. Actually, whereas TGFb1 disruption in
mice results in bone defects, its overexpression displays an oste-
oporosis-like phenotype (35), suggesting that TGFb1 enhances
the proliferation and early differentiation of osteoblasts, but
impairs their terminal differentiation. In contrast to TGFb1,
relation of GAGs with BMP-2 is still unclear as HS is reported
either to enhance (36) or to disrupt (37) BMP-2 signaling.

TGFb1 and BMP-2 overexpression in primary myelofibrosis-
MSCs prompted us to study the potential involvement of both
cytokines in the pro-osteogenic commitment of primary myelo-
fibrosis-MSCs. Primary myelofibrosis-MSCs exhibit an increased
level of phospho-Smad2 demonstrating that TGFb pathway is
already highly activated in these cells compared with HD-MSCs.
This is consistent with increased TGFb1 expression in primary
myelofibrosis-MSCs, suggesting that primarymyelofibrosis-MSCs
are constantly primed by endogenous TGFb1 to an osteoprogeni-
tor state. Such commitment will lead to the increase ability of
osteogenic differentiation of primary myelofibrosis-MSCs when
cultured in osteogenic conditions (Fig. 6, adapted from ref. 23). In
accordance, Serpine1, which is expressed early during osteogenic
differentiation, and upregulated by TGFb1 (38), is overexpressed
in primary myelofibrosis-MSCs arguing for their TGFb1-induced
preosteogenic state. As expected, when TGFb1 pathway was

Figure 5.
TGFb1 is involved in the osteogenic deregulation of primary myelofibrosis (PMF)-MSCs. A, expression of protein pSmad2 in MSCs from primary myelofibrosis
(black bar) or HD (white bar) cultivated up to 48 hours in a-MEM medium supplemented by FBS 10% and from primary myelofibrosis cultivated in the same
conditions in addition to SB-431542 (10 mmol/L; gray bar). Results are expressed as a ratio to the median expression of the targeted proteins in all samples
of the same experiment; blots are representative of experiments (n ¼ 5 in each groups; � , P < 0.05). B, principal component analysis of gene expression (DLX5,
Runx2, TWIST1, Osterix) under TGFb1 stimulation (10 ng/mL during 48 hours). Blue circle clusters primary myelofibrosis-MSCs; green circle clusters HD MSCs
(n ¼ 5 in each groups). C, MSCs from primary myelofibrosis patients (PMF) or controls were cultured up to 21 days in osteogenic medium with or without
SB-431542 (10 mmol/L) or LDN-193189 (1 mmol/L). Von Kossa (VK), Red Alizarin (RA), and alkaline phosphatase (ALP) staining were performed. Primary
myelofibrosis-MSCs showed increased mineralization (VK and RA) and ALP activity during osteogenic differentiation. TGFb1 inhibition is associated with an
increased osteogenic differentiation of control-MSCs and primary myelofibrosis-MSCs, attested by a higher VK/RA and ALP staining. Inhibition of BMPs leads to an
increase osteogenic ability in primary myelofibrosis as well as in HD MSCs. Pictures are representive of 6 experiments (left). Quantification of Red Alizarin
staining showed that primarymyelofibrosis-MSCs (n¼ 7) underwent a significant lower increase ofmineralization comparedwith controls (n¼ 3) during osteogenic
differentiation with TGFb1 inhibition, but the same ratio of increased mineralization when BMPs were inhibited (� , P < 0.05; right). ns, nonsignificant.
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inhibited by addition of a TGFb1 R1 inhibitor, the osteogenic
capability of MSCs from patients and from HDs are both
increased. However, the relative increase in mineralization is less
important for primary myelofibrosis-MSCs likely due to their
higher steady-state osteogenic commitment. Altogether, our data
suggest that TGFb1 participates in the higher osteogenic ability of
primary myelofibrosis-MSCs.

In contrast, inhibition of BMP pathway by LDN-193189, an
inhibitor of BMP receptors ALK2, 3 and 6, had an unexpected
stimulatory effect on osteogenic differentiation in MSCs from
both primary myelofibrosis patients and HDs. This was quite
unexpected as BMP-2 is a major osteogenic enhancer and as its
inhibition should have led to a decreased rather an increasedMSC
osteogenic differentiation. The reason of such discrepancy is still
unknown but it might be explained by the fact that LDN-193189
is also able to inhibit other BMPs than BMP-2 and among them,
some inhibitors of BMPs (20).

The pathophysiologic mechanisms leading to the TGFb1 over-
production by primary myelofibrosis-MSCs need to be studied.
To date, some chromosomal abnormalities have been described
in primary myelofibrosis-MSCs (8), but no recurrent mutations
potentially responsible for TGFb1 overproduction have been
identified. TGFb1 is secreted as latent TGFb1 and its activation
is tightly regulated by cell traction forces and proteinases (39). In
primary myelofibrosis, the increased reticulin production by
primary myelofibrosis-MSCs that would modify the stiffness of
the bone marrow stroma could participate in this activation
process.

Epigeneticmodifications could be involved in themaintenance
of this phenotype. The deregulated expression of miRNAs such as
miR-34 and miR-106 (our unpublished data), known to activate
TGFb1 signaling pathway (40) and in relation with inflamm-
aging (41), are in agreement with our hypothesis. The high
inflammatory context in which primary myelofibrosis is devel-
oping could therefore promote epigenetic alterations of primary
myelofibrosis patient's stroma, resulting in MSC imprinting.

While demonstrating intrinsic functional alterations of medul-
lar MSCs from primary myelofibrosis patients, our results do not
preclude that, in vivo, stromal cells are targets of the cytokine storm
generated by the pathologic hematopoietic cells (2). The issue of
whether the MSC abnormalities evidenced in the present work
could have been in vivo triggered by the hematopoietic clone
during the course of the disease remains to be addressed. As
elegantly proposed by H.C. Hasselbalch (42), chronic inflamma-
tion may be a driver of clonal evolution in patients with MPNs,
from early disease state (essential thrombocytopenia and poly-
cythemia vera) to more progressive disease state (primary mye-
lofibrosis). The fact that osteogenic alterations are not observed in
essential thrombocytopenia and polycythemia vera is in accor-
dance with this assumption. Thus, in primary myelofibrosis
patients and over decades, it could be suggested that the stroma
is inflammatory-imprinted by clonal hematopoietic cells to an
"autonomous" state where it becomes independent of hemato-
poietic cell stimulation, rendering this inflammatory vicious circle
unbreakable without combined stroma-targeted therapies.

Our data indicate that primary myelofibrosis-MSCs display an
"intrinsic" osteogenic signature and that their increase differen-
tiation into osteoblasts is partly dependent of endogenous TGFb1
production and activation. These alterations, maintained over
several in vitro passages and therefore independent from any local
stimulation by hematopoietic cells, raise the issue of the reversal
of fibrosis after HSC transplantation reported in some patients.
However, the purely reactive conception of bone marrow altera-
tions is questioning and results are quite conflicting. Actually,
some studies report that decrease of fibrosis is slow, incomplete
(43, 44), and inconstant (45) while others show that dose-
reduced conditioning, followed by allogeneic stem cell transplan-
tation, resulted in a rapid resolution of bonemarrowfibrosis (46).
Intriguingly, decrease of fibrosis is not correlated with megakar-
yocytes that are the main source of profibrotic cytokines, suggest-
ing that replacement of clonal hematopoiesis is not the only
reason responsible for fibrosis regression (44). Regarding osteo-
sclerosis, data are more homogenous: no improvement is
observed after transplantation (44, 47). Altogether, these results
strengthen our hypothesis that curing the leukemic cells is not
sufficient to cure the stromal alterations.

In conclusion, our results are of pathophysiologic importance
as they evidence intrinsic functional alterations of mesenchymal
stromal cells andof their derivatives in primarymyelofibrosis. The
increased osteogenic potential of primary myelofibrosis-MSCs
associated with increased fibrosis contrasts with data from Avan-
zini and colleagues reporting a decreased osteogenic ability in
MPN-MSCs (8) but fits with the osteomyelosclerosis observed in
patients. Besides their role in osteogenesis, TGFb1 and BMPs are
involved in regulation of HSC dormancy and therefore, they may
contribute to leukemic stem cell maintenance as recently reported
in another myeloproliferative neoplasm such as chronic myeloid
leukemia (48). Taking into account the cross-influence between
the bone marrow extracellular matrix composition and the

Figure 6.
TGFb1 involvement in osteogenic impairment of primary myelofibrosis
(PMF)-MSCs. A, in nonpathological healthy donor MSCs, osteogenic
differentiation features two opposite effects of TGFb1; a minor effect (arrow
with dashed-line) is represented by the recruitment of osteoprogenitors
(OP; cells with pink nuclear) from MSCs and the main effect (arrow with full-
line) by an inhibition of late stages of osteoblastic differentiation (OB; cells
with blue nuclear). B, in primary myelofibrosis-MSCs, self-production of
TGFb1 is increased compared with HDs and leads to an increased pool of
osteoprogenitor-like cells, and then, under osteogenic induction to an
increased mineralization and alkaline phosphatase activity.
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proliferation/differentiation capability of hematopoietic stem
cells (5), the stimulating issue concerning the impact of stromal
cell alterations on hematopoiesis needs to be elucidated.

Bybeing "bad stromal cells,"MSCs take entirely part in the "bad
seed in bad soil" concept (1) and strengthen the importance of
stromal cells in the development of a neoplasia. Therefore, MSCs
from patients are good candidates for niche-targeted therapies
that, in association with drugs eradicating the hematopoietic
clone, would improve patient treatment.
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